

SDM630-EV V2

DIN Rail Smart Meter for Single and Three Phase EV Systems

USER MANUAL 2025 V1.2

Statements

All rights reserved. Without the written permission of the company, no paragraphs or chapters in this manual can be extracted, copied or reproduced in any form. Otherwise, the violator shall bear all consequences.

Eastron reserves all legal rights.

Eastron reserves the right to amend the product specifications in this manual without prior notice. Before placing an order, please contact our company or local agent to get the latest specifications.

CONTENT

Version History	1
Risk Information	2
Chapter 1. Introduction	4
1.1 Product Introduction	4
1.2 Product Characteristics	4
Chapter 2. Technical Parameters	5
2.1 Technical Parameters	5
2.2 Mechanical Characteristics	5
2.3 Performance Criteria	5
2.4 Electromagnetic Compatibility	5
2.5 Safety	6
2.6 Accuracy	6
2.7 Communication	6
2.8 Dimensions	7
2.9 Wiring Diagram	7
Chapter 3. Operation	10
3.1 Installation Display	10
3.2 Button Functions	10
3.3 Measurements	11
3.3.1 Voltage and current	11
3.3.2 Power factor	11
3.3.3 Power	11
3.3.4 Energy	12
3.4 Setup Mode	13
3.4.1 Menu Option Selection	13
3.4.2 Number Entry Procedure	13
3.4.3 Main Set	14
3.4.4 Communication Set	14
3.4.5 Time Set	15
3.4.6 Record	15
Chapter 4. OCMF-EV software	17
4.1 Introduction	17

	4.2 Connection	. 17
	4.3 How to use the software	19
С	hapter 5. Digital Signature	24
	5.1 Introduction	24
	5.2 Process of Signature	. 24
	5.3 The generation and reading of the public key	. 25
	5.3.1 Generation of private/public key	. 25
	5.3.2 Generation of private/public key	. 25
	5.4 Json data format	25

1

Version History

Version	Date	Changes
1.0	2022-10-27	Initial issue
1.1	2025-01-02	Update the company logo
1.2	2025-09-17	New template

Risk Information

Information for Your Own Safety

This manual does not contain all of the safety measures operating the equipment (module, device) for different conditions and requirements. However, it does contain information which you must know for your own safety and to avoid damages. These information are highlighted by a warning triangle indicating the degree of potential danger.

Warning

This means that failure to observe the instruction can result in death, serious injury or considerable material damage.

Caution

This means hazard of electric shock and failure to take the necessary safety precautions will result in death, serious injury or considerable material damage.

Qualified personnel

Operation of the equipment (module, device) described in this manual may only be performed by qualified personnel. Qualified personnel in this manual means person who are authorized to commission, start up, ground and label devices, systems and circuits according to safety and Regulatory standards.

Proper handling

The prerequisites for perfect, reliable operation of the product are proper transport, proper storage, installation and proper operation and maintenance. When operating electrical equipment, parts of this equipment automatically carry dangerous voltages. Improper handling can therefore result in serious injuries or material damage.

- ♦ Use only insulating tools.
- ♦ Do not connect while circuit is live (hot).
- ♦ Place the meter only in dry surroundings.
- ♦ Do not mount the meter in an explosive area or expose the meter to dust, mildew and insects.
- ♦ Make sure the wires are suitable for the maximum current of this meter.
- ♦ Make sure the AC wires are connected correctly before activating the current/voltage to the meter.
- ♦ Do not touch the meter connecting clamps directly with metal, blank wire and your bare hands as you may get electrical shock.
- ♦ Make sure the protection cover is placed after installation.
- Installation, maintenance and reparation should only be done by qualified personnel.
- ♦ Never break the seals and open the front cover as this might influence the function of the meter, and will cause no warranty.
- ♦ Do not drop, or allow strong physical impact on the meter as the high precisely components inside may be damaged.
- Designed to be mounted inside of switchboards or cabinet on DIN rail.

- This device must have a suitable sized Circuit Breaker feeding the Multi Function Energy Meter so it does not exceed the maximum rated current.
- ♦ The supply wiring of this device shall be suitable sized cable to match the installed circuit breaker.
- ♦ A Disconnection Device (Circuit Breaker) should be installed close to the Multi Function Energy Meter.
- ♦ The Disconnection Device shall be marked as the Disconnection Device for the Multi Function Energy Meter.

Disclaimer

We have checked the contents of this publication and every effort has been made to ensure that the descriptions are as accurate as possible.

However, deviations from the description cannot be completely ruled out, so that no liability can be accepted for any errors contained in the information given. The data in this manual is checked regularly and the necessary corrections are included in subsequent editions. We are grateful for any improvements that you suggest.

Chapter 1. Introduction

1.1 Product Introduction

The meter SDM630-EV V2 is a three phases energy meter designed by EASTRON for E-Car Charger billing purpose. The meter adopts special encryption method for the safety of data transmission: One-way encryption is achieved through ECC (Ellipse Curve Ctyptography).

The SDM630-EV V2 measures and displays the characteristics of single phase two wires (1p2w), three phase three wires (3p3w,) and three phase four wires(3p4w) supplies, including voltage, frequency, current, power, active and reactive energy, imported or exported. Energy is measured in terms of kWh, kVArh.

The meter SDM630-EV supports max. 100A direct connection, saves the cost and avoid the trouble to connect external CTs, giving the unit a cost-effective and easy operation. Built-in interfaces provide 2 channels RS485 Modbus RTU outputs. Configuration is password protected.

1.2 Product Characteristics

- Bi-directional measurement IMP & EXP
- ECC encryption
- LED pulse output
- 2 channels of RS485 Modbus RTU
- Din rail mounting 35mm
- 100A direct connection
- Multi-parameters measurement
- Better than Class 0.5 / C accuracy
- LCD with white backlit, adjustable backlit time

Measurements:

- Phase voltage: V1, V2, V3
- Line voltage: V1-2, V2-3, V3-1
- Current: I1, I2, I3, IN
- Active power: P1, P2, P3, P total (total active power)
- Reactive power: Q1, Q2, Q3, Q_total (total reactive power)
- Apparent power: S1, S2, S3, S_Total (total apparent power)
- Frequency: HzPower factor: PF
- Active energy: Ep_imp (import active energy), Ep_exp (export active energy), Ep_total (total active energy)
- Reactive energy: Eq_imp (import reactive energy), Eq_exp (export reactive energy), Eq_total (total reactive energy)

Setup:

- RS485 Modbus RTU
- Backlit time
- Supply system 1p2w, 3p3w,3p4w
- Password modification

Chapter 2. Technical Parameters

2.1 Technical Parameters

3*230/400V AC
100 - 277V AC (L-N)
100 to 480V AC (L-L)
0.3-10(100)A
0.04A
1A
30Imax for 0.01S
50/60Hz
4KV/1min
6kV – 1.2/50μS waveform
≤ 2W/10VA
≤0.05VA
LCD with white backlit
999999.99 kWh/kVArh

2.2 Mechanical Characteristics

Weight	≈314g
IP Degree of Protection	IP51 Front Display
(IEC 60529)	IP20 Whole Meter
Dimensions (DxHxW)	100*72*66mm
Mounting	DIN Rail 35mm
Material of Meter Case	Self-extinguishing UL 94 V-0
Mechanical Environment	M1

2.3 Performance Criteria

Operation humidity	≤90% Non-condensing
Storage humidity	≤95% Non-condensing
Operating temperature	-40℃~+70℃
Storage temperature	-40℃~+80℃
Pollution Degree	II
Altitude	≤2000m
Vibration	10Hz to 50Hz, IEC 60068-2-6

2.4 Electromagnetic Compatibility

Electrostatic Discharge	IEC 61000-4-2
Immunity to Radiated Fields	IEC 61000-4-3
Immunity to Fast Transients	IEC 61000-4-4
Immunity to Impulse Waves	IEC 61000-4-5
Conducted Immunity	IEC 61000-4-6
Immunity to Magnetic Fields	IEC 61000-4-8
Immunity to Voltage Dips	IEC 61000-4-11
Radiated Emissions	IEC 62052-11
Conducted Emissions	IEC 62052-11

2.5 Safety

Over-voltage Category	CAT III
Installation Category	CAT III
Insulating Encased Meter of Protective	11
Class	"

2.6 Accuracy

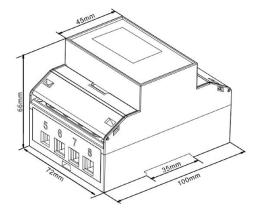
Parameters	Accuracy	Resolution
Voltage	±0.5%	0.1V
Current	±0.5%	0.01A
Frequency	±0.2%	0.01Hz
Power Factor	±0.01	0.001
Active Power	±1%	0.01kW
Reactive Power	±1%	0.01kVAr
Apparent Power	±1%	0.01kVA
Active Energy	Class 0.5 IEC62053-21 Class C EN50470-3:2022	0.001kWh
Reactive Energy	Class 2 IEC 62053-23	0.001kVArh

2.7 Communication

RS485 Modbus RTU

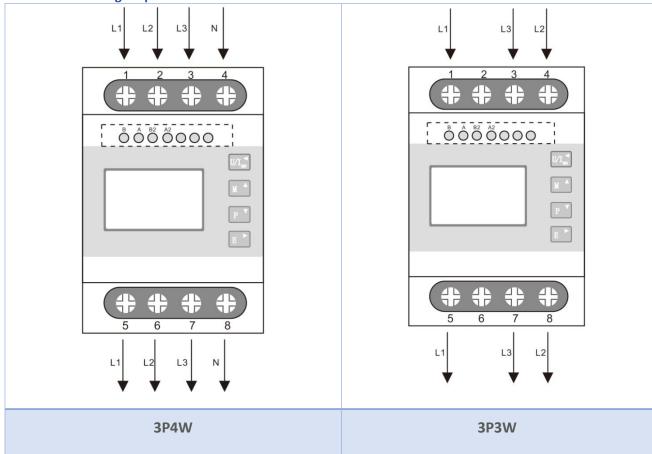
The 1st Modbus Output (configurable):

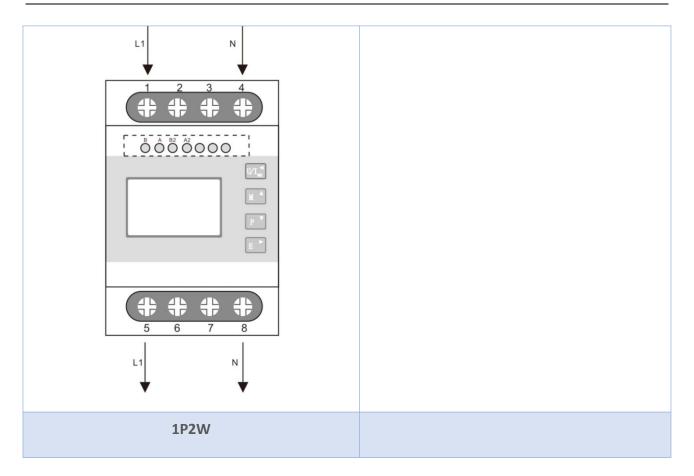
For Modbus RTU, the following RS485 communication parameters can be configured Via the Set-up menu:


To Modbus KTO, the following KS+05 communication parameters can be comigared via the Set up menu.		
Bus Type RS485		
Communication Protocol	Modbus RTU	
Baud Rate	2400/4800/9600(default)/19200/38400bps	
Address Range	001 to 247	
Bus Load	64 PCS	
Communication Distance	1000m	
Parity Bit	none(default)/ odd / even	
Stop Bit	1 or 2	
Data Bits 8		

The 2nd Modbus Output (non-configurable):

Bus Type	RS485
Communication Protocol	Modbus RTU
Baud Rate	9600
Address Range	001 to 247
Bus Load	64 PCS
Communication Distance	1000m
Parity Bit	none
Stop Bit	1
Data Bits	8


2.8 Dimensions


Height: 100 mm Width: 72mm Depth: 66mm

2.9 Wiring Diagram

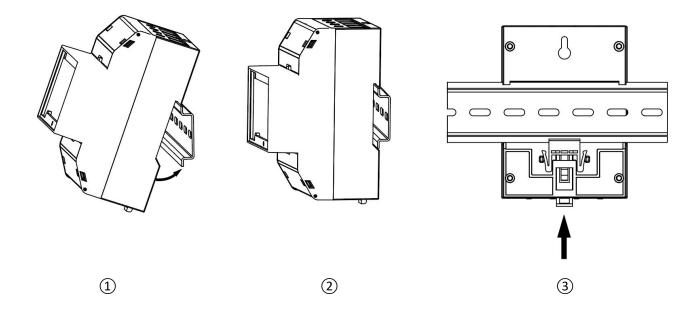
Current and Voltage Inputs

Current Direction Configuration: The current direction can be reversed by writing to the 'Current Direction' register via the RS485 communication interface.

Wiring Guide

	Measurement Connection	Screw Connection
Terminal ①~⑧	Strip Length	12-13mm
	Screw	M5
	Rigid/Supple	4-25mm² (11~4AWG)
	Tightening Torque	3.5Nm
	Model	PH2
	Measurement Connection	Screw Connection
	Strip Length	6-7mm
Terminal (B、A、B2、A2)	Rigid/Supple	0.5-1.5mm² (26 ~ 14AWG)
	Tightening Torque	0.4Nm
	Model	PH0

Installation


Step 1: Select a 35mm-wide DIN rail, Pull down the back-end clip on the meter to unlock the mounting mechanism.

Step 2: Align Upper Slot with DIN Rail. Position the upper slot of the meter's DIN rail groove onto the DIN rail, ensuring full contact (see Figure 1).

Step 3: Following the direction indicated in Figure 1, engage the lower slot of the DIN rail groove onto the DIN rail until audibly seated (see Figure 2).

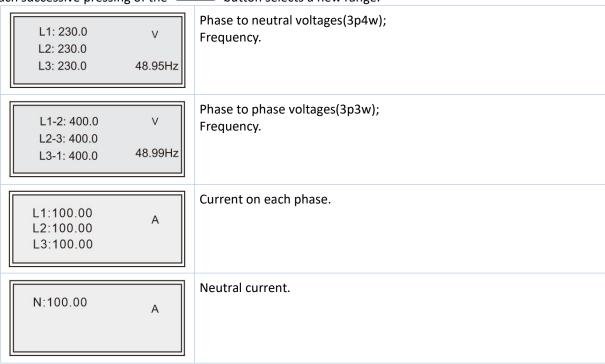
Step 4: Push up the back-end clip to lock the meter firmly onto the DIN rail (see Figure 3).

Chapter 3. Operation

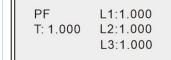
3.1 Installation Display

The interface performs initial testing. Initial testing... The second screen indicates: SV: 41 01.07 software version; CSV: 6.002 software number; CX: 0500 CRC: 3CAD1655 CRC number. Meter serial number; Meter SN: 000000000 Modbus ID; Modbus ID: 001 Baud rate info are provided. Baudrate: 9600 The public key will be displayed on the fourth screen. Public key After a short delay, the screen will display active energy measurements, T: 0000000.000 kWh date, time, time zone. 2025-11-20 +08:00 T20:06:15

3.2 Button Functions

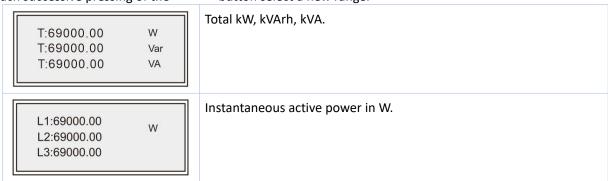

Button	Short click		Long press (3s)	
	Display mode	Setup mode	Display mode	Setup mode
$U/I_{\rm esc}$	V1 V2 V3 V1-2 V2-3 V3-1 I1 I2 I3 IN	Return to previous menu		
M	PF PF1 PF2 PF3	Previous page or increase value		
P	P-t Q-t S-t P1 P2 P3 Q1 Q2 Q3 S1 S2 S3	Next page or decrease value	public key	
E 📥	Active E-t, time Id Active E-t, Imp active E, Exp active E Reactive E-t, Imp reactive E, Exp reactive E	Move to right side	Enter Setup mode	Confirm setting

3.3 Measurements


3.3.1 Voltage and current

Each successive pressing of the button selects a new range:

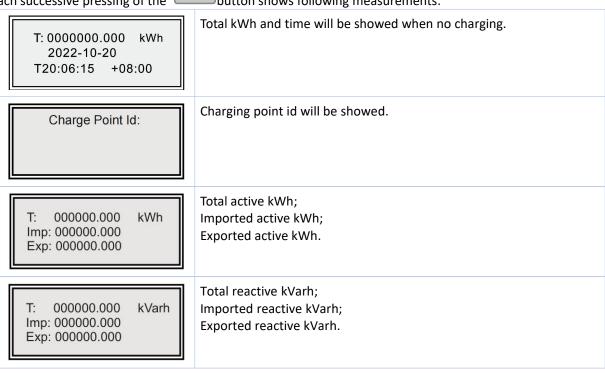
3.3.2 Power factor

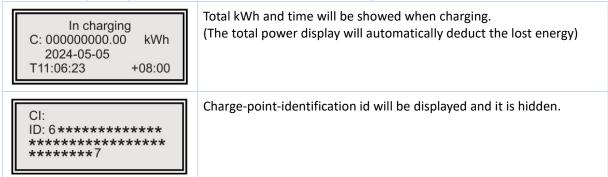

Each successive pressing of the button selects a new range:


Power factor.

3.3.3 Power

Each successive pressing of the button select a new range:




3.3.4 Energy

Each successive pressing of the button shows following measurements:

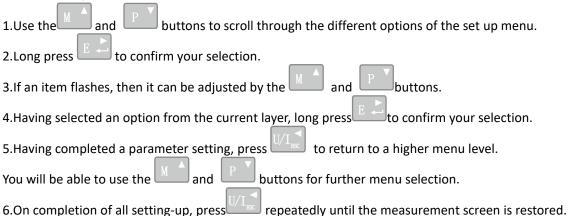
When in charging, the display will change(as follows):

Each successive pressing of the button selects a new range:

3.4 Setup Mode

To enter set-up mode, pressing the

button for 3 seconds, until the password screen appears.



Setting up is password-protected so you must enter the correct password (default '1000') before processing. If an incorrect password is entered, the display will show: Error!

To exit setting-up mode, press repeatedly until the measurement screen is restored. Some menu items, such as password and CT, require a four-digit number entry while others, such as supply system, require selection from a number of menu options.

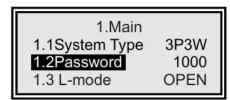
3.4.1 Menu Option Selection

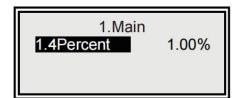
3.4.2 Number Entry Procedure

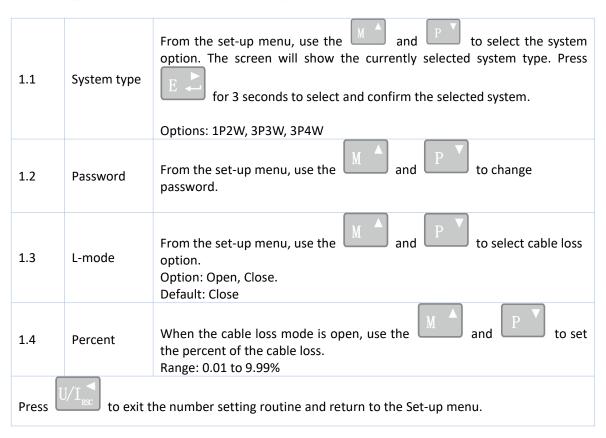
When setting up the unit, some screens require the entering of a number. In particular, on entry to the setting up section, a password must be entered. Digits are set individually, from left to right.

The procedure is as follows:

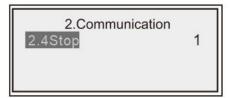
1. The current digit to be set flashes and is set using the and buttons.


2. Short press to confirm the digit setting and remove to the next.


3. After setting the last digit, long press to confirm the setting.


4. Press to return to a higher menu level.


3.4.3 Main Setting

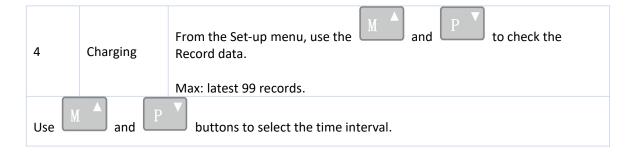


3.4.4 Communication Setting

2.1	Addr	From the set-up menu, use the and to set the address. The screen will show the currently selected address. Hold for 3 seconds to set and confirm the new address. Options: 001~247
2.2	Baud	From the set-up menu, use the and rate. Options: 2400, 4800, 9600, 19200, 38400

		Default: 9600
2.3	Parity	From the set-up menu, use the option. Options: NONE, EVEN, ODD. Default: NONE.
2.4	Stop	From the set-up menu, use the option. Options: 1, 2. Default: 1. Note: , the stop bit can be changed to 2 when the parity is NONE.
Press to exit the number setting routine and return to the Set-up menu.		

3.4.5 Time Setting



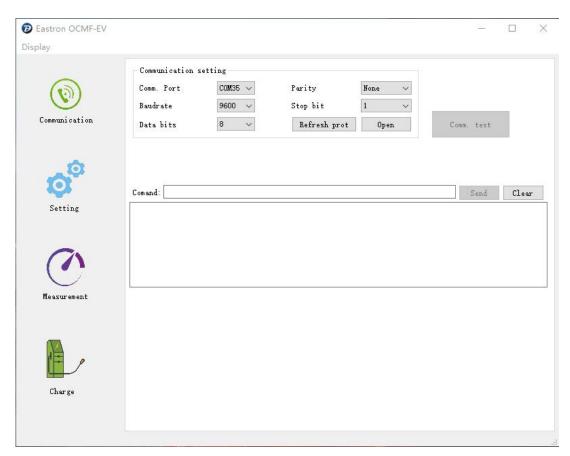
3.1	TIME ZONE	From the set-up menu, use and buttons to select the ZONE. Option: -12 to +12
3.2	Backlight	From the set-up menu, use and buttons to select the Backlight. Options: on, 10, 30, 60, 120, off. Default: 60 min.
Use buttons to select the time interval. Press to confirm the set-up. Press to exit the number setting routine and return to the Set-up menu. SET will be removed.		

3.4.6 Charging Log

Charging log CSID: 00000022 NO:001 2025-01-09 T17:11:36 E-DU: 00: 00: 03

Eastron

Chapter 4. OCMF-EV software


4.1 Introduction

Eastron OCMF-EV can communicate with the electricity meter SDM630-EV through the converter USB to RS485. It can simulate the charging pile to set the parameters of the electricity meter and read the multi parameters of the meter, and charge control. It also supports the signatures of the OCMF data.

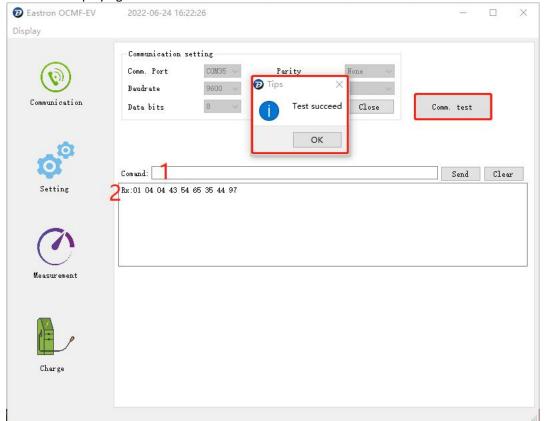
4.2 Connection

Step 1: Before setting the communication parameters, please connect the meter SDM630-EV with the computer via a converter USB to RS485.

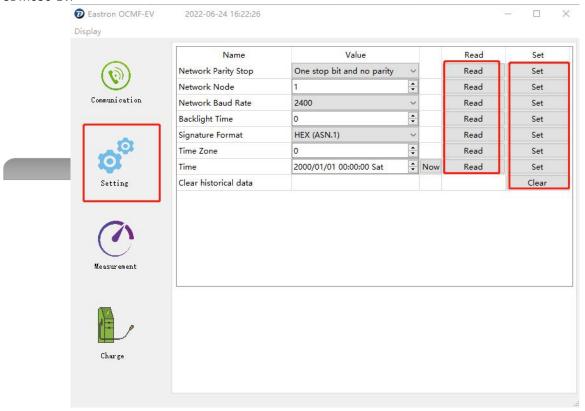
Step 2: Open the OCMF-EV software, as shown in the figure below:

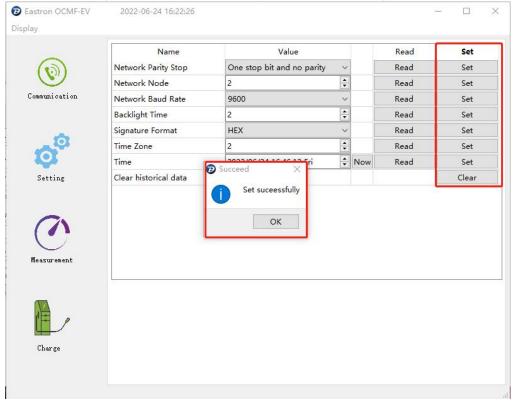
Step 3: Open the relevant terminal of the USB and set the correct parameters of the communication. The default of the meter SDM630-EV:

Baud rate: 9600 Parity: None Stop: 1


If the OCMF-EV software cannot display the port of Com.of USB, please click "Refreshport".

Step 4: After opening the Comm port, please click "Comm. Test" to test the communication. If the testing is OK, you will see a pop up window to show "Test succeed".

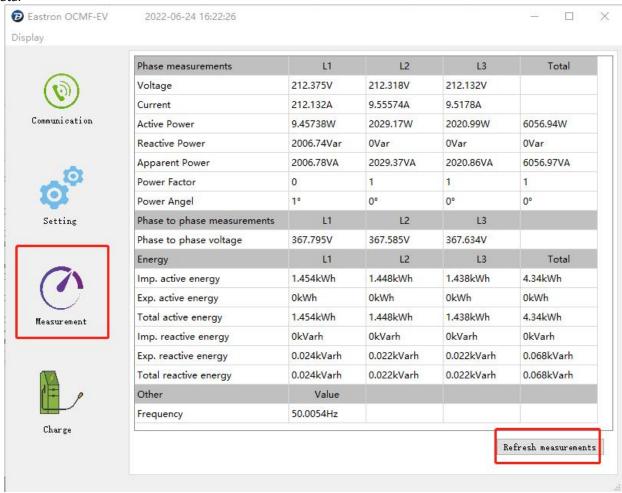

Window bar 1 is for sending some command if you need. And the software will automatically create CRC. Window bar 2 is for displaying the answer data from the meters.



4.3 How to use the software

Step 1: Click "Setting " to set the parameters and click "read" to read the data from the energy meter SDM630-EV.

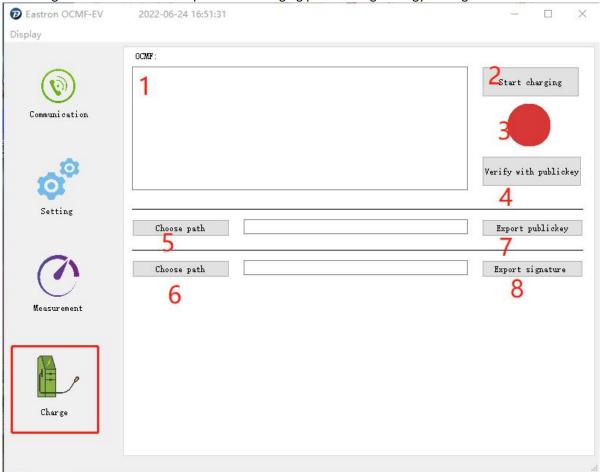
Step 2: Click "Set "to set the parameters. If done, it will show "Set successfully"


Note:

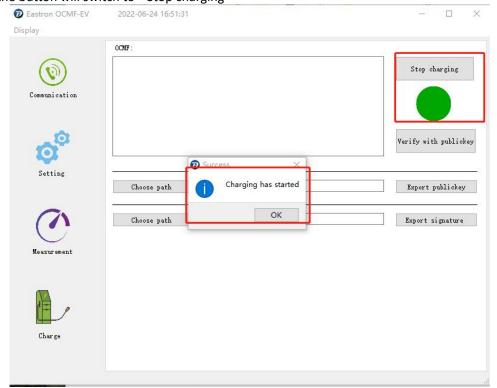
-> Measurement

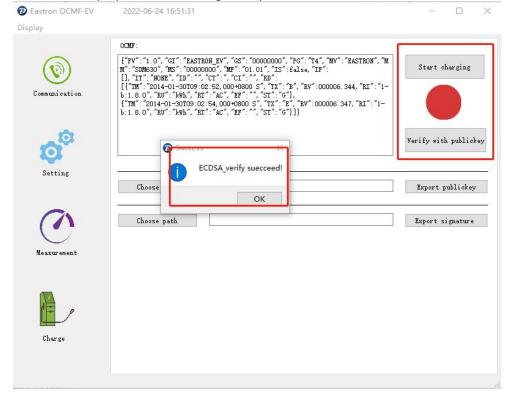
Some common parameters can be read via the Measurement part in the software as shown in the figure below.

Eastron


Click " Measurement " to enter the measurement window, then click " Refresh measurements to get updated data.

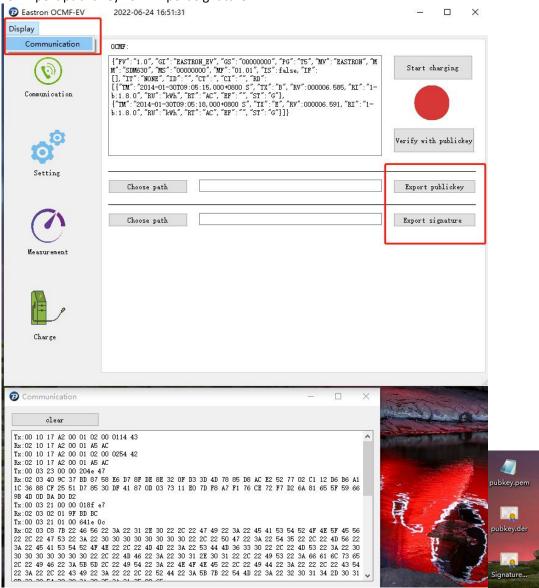
-> Charging:


The charge area can simulate the process of charging pile to charge energy and signature.


- 1 Indicate receiving the OCMF data.
- 2 Starting / Ending Charging button.
- 3 Charging light: red is for ending charging and green means it is under charging.
- 4 Use Public Key to sign.
- (5) Select the address of the output of Public Key file.
- (6) Select the address of the output of Signing file.
- (7) Click to output the Public Key file.
- 8 Click to output the Signing file.

Eastron

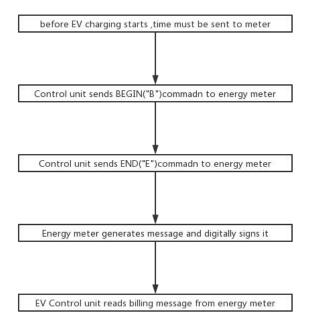
Step 3: Click "Start charging", you will see a pop-up window "Charging has started" as following. And the button will switch to "Stop charging"



Step 4: Click "Stop charging" to end the charging, then click "Verify with Public Key" to check the date of Signing, and then you will see the Pop-up window showing "Verify successed".

Eastron

Step 5: Click "Communication" to open the Comm to monitor the data. The relevant data can be exported via clicking the "Export public key" or "Export signature".


Chapter 5. Digital Signature

5.1 Introduction

The energy meter SDM630-EV supports the digital signature of energy information, which can ensure the integrity of the data received by the terminal. All of the digital signatures are completed by special encryption chips, which can better ensure the security of data. The meter supports ECDSA FIPS186-3 elliptic curve digital signature. It can communicate with the EV charger control unit through RS485.

5.2 Process of Signature

EV charger control unit is responsible to send start and stop command to energy meter. Energy meter measures consumed energy during charging. When charging is finished, EV control unit provides data packet (customer info, time, etc.) to energy meter via MODBUS communication. Energy meter adds measured energy and generates final billing message with digital signature. EV charger control unit then reads complete billing information with measured energy consumption and digital signature.

EV charger control unit must use following procedure to measure charging consumption and sign Data packet:

- 1. Set time, time zone, signature format
- 2. Send Begin command
- 3.Enter data packet size
- 4. Send intermediate reading commands (optional)
- 5. Send End command (triggers signing process)
- 6. Check signature status register until signature is ready
- 7. Read Output message length
- 8. Read Output message
- 9. Read signature length
- 10. Read signature
- 11. Read public key

5.3 The generation and reading of the public key

5.3.1 Generation of private/public key

This is one-time procedure made at production of energy meter. Generation of key pair is HW based with dedicated crypto chip. Private key is stored internally within the crypto chip and there is no way of reading it.

5.3.2 Generation of private/public key

Public key is available to end user for verification of digital signature. Therefore, public key is readable through MODBUS communication.

Public key is stored in 64 bytes raw format at MODBUS address 48961.

For **Transparenz Software** check, public key header should be prepended:

3059301306072A8648CE3D020106082A8648CE3D03010703420004

For checking with ECDSA, public key header is: 04.

5.4 Json data format

Format is compliant with OCMF v1.0.

Energy meter requires following fields in data packet:

```
OCMF | {
"FV":"1.0",
"GI":"",
"GS":"",
"PG":""
"MV":"",
"MM":"",
"MS":"",
"MF":"",
"IS":true,
"IF":[],
"IT": "NONE",
"ID":",
"CT":""
"CI":"",
"RD":[
"TM":"2019-11-11T13:22:28,000+0000 S",
"TX": "B",
"RV":123457.529,
"RI":"1-b:1.8.0",
"RU":"kWh",
"RT": "AC",
"EF":"",
"ST":"G"
},
"TM": "2019-11-11T13:24:12,000+0000 S",
"TX":"E",
"RV":123457.529,
"RI":"1-b:1.8.0",
"RU":"kWh",
"RT": "AC",
"EF":"",
"ST": "G"}
1
} |
"SD":string,
```

Eastron

}

key	type	describe
FV	String	Format-Version: = "1.0"
GI	String	Gateway identification= "EASTRON EV".
GS	String	serial number (string of 8 char)
PG	String	Pagination of the entire dataset = string of "T <value>" with value increased</value>
		for each read of transaction
MV	String	Meter-Vendor = "EASTRON"
MM	String	Instrument identification= "SDM630"
MS	String	serial number (string of 8 char)
MF	String	Meter-Firmware: "01.01"
IS	Boolean	Identification status: General status for user assignment:
		true: Users successfully assigned,
		false: Users not associated.
IF	Array of	Identification flags for RFID, OCPP, ISO15118 and PLMN protocol
	String	
IT	String	Identification-Type: "string"
ID	String	Identification-Data: "string"
TT	String	Tariff Text
СТ	String	Charge-Point-Identification-Type
Cable	String	Cable name
name		
CI	String	Charge-Point-Identification
CF	String	Charge controller firmware
TM	String	Time
TX	String	Transaction
RV	Number	Reading Value
RI	String	1-b:1.8.0 .Purchase of electrical energy (active energy) from the power grid
		(of the charging point operator) to the customer.
RU	String	Reading Unit
RT	String	Reading Current Type
EF	String	"" No error
		"E" Error in the energy register
		"t" Error in the time status
		"Et" Error in the energy registers and the time status
ST	String	Status
	99	1

CONTACT US

If you have any question, please feel free to contact our sales team.

Eastron Electronic Co., Ltd.

No. 52, Dongjin Road, Nanhu, Jiaxing, Zhejiang, China Tel: +86-573-83698881 Fax: +86-573-83698883 Email: sales@eastrongroup.com www.eastrongroup.com

